关于高三数学教学工作计划三篇
光阴迅速,一眨眼就过去了,我们又将迎来新一轮的努力,现在就让我们好好地规划一下吧。什么样的工作计划才是好的工作计划呢?下面是小编为大家整理的高三数学教学工作计划3篇,欢迎大家分享。
高三数学教学工作计划 篇1一、指导思想
研究教材,了解新的信息,更新观念,倡导理性思维,重视多元联系,探求新的教学模式,加强教改力度,注重团结协作,全面贯彻党的教育方针,面向全体学生,因材施教,激发学生的数学学习兴趣,培养学生的数学素质,全力促进教学效果的提高。
二、教学设想
(一)总的原则
1、认真研读数学考试大纲及全国卷考试说明的说明,做到宏观把握,微观掌握,注意高考热点,特别注意高考的信息。根据样卷把握第一、二轮复习的整体难度。
2、不孤立记忆和认识各个知识点,而要将其放到相应的体系结构中,在比较、辨析的过程中寻求其内在联系,达到理解层次,注意知识块的复习,构建知识网路。
3、立足基础,不做数学考试大纲以外的东西。精心选做基础训练题目,做到不偏、不漏、不怪,即不偏离教材内容和考试大纲的范围和要求。不选做那些有孤僻怪诞特点、内容和思路的题目。利用历年的高考数学试题作为复习资源,要按照新教材以及考试大纲的要求,进行有针对性的训练。严格控制选题和做题难度,做到不凭个人喜好选题,不脱离学生学习状况选题,不超越教学基本内容选题,不大量选做难度较大的题目。
(二).体现数学学科特点,注重知识能力的提高,提升综合解题能力
1、加强解题教学,使学生在解题探究中提高能力。
2、注重联系实际,要从解决数学实际问题的角度提升学生的综合能力。 不脱离基础知识来讲学生的能力,基础扎实的学生不一定能力强。教学中,不断地将基础知识运用于数学问题的解决中,努力提高学生的学科综合能力。 多从贴近教材、贴近学生、贴近实际角度,选择典型的数学联系生活、生产、环境和科技方面的问题,对学生进行有计划、针对性强的训练,多给学生锻炼各种能力的机会,从而达到提升学生数学综合能力之目的。
(三)合理安排复习中讲、练、评、辅的时间
1、精心设计教学,做到精讲精练,不加重学生的负担,避免题海战
2、协调好讲、练、评、辅之间的关系,追求数学复习的最佳效果
3、注重实效,努力提高复习教学的效率和效益
(四)改变传统复习模式,体现小组交流合作
1、淡化各自为战,加强备课小组交流合作,资源共享。
2、坚持学生主题,教师主导。
3.注重学法指导及心理辅导
(1)及时向学生介绍学习方法和学习策略,及时收集教学过程中反馈信息并弥补学生的不足。
(2)针对不同学生的实际水平,合理安排教学难度,有利于学生成功情感体验,促进其提高。
(3)加强边缘生的个别辅导。A类边缘生采用各个击破,B类边缘生抓基础,促能力,A类边缘生注意个别指导;B类边缘生手把手的教,主要课堂重点关注,课后重点辅导。
三、教学重点
1、数学思想方法
2、教材的重点、高考的热点
3、依据新大纲、夯实基础,突出内容,课程内容中的向量、概率以及概率与统计、导数等的教学。函数,解析几何,立体几何,数列仍是重点。
4、注意以单元块的纵向复习为主到综合性横向发展为主。
从数和形的角度观察事物,提出有数学特点的问题,注重知识间的内在联系与综合。
注意知识的交叉点和结合点。
四、教学措施
1、以能力为中心,以基础为依托,调整学生的学习习惯,调动学生学习的积极性,让学生多动手、多动脑,培养学生的运算能力、逻辑思维能力、运用数学思想方法分析问题解决问题的能力。精讲多练,一般地,每一节课让学生练习20分钟左右,充分发挥学生的主体作用。
2、坚持先备课后上课,加强学习,多听课,探索第一轮复习的教学模式。
3、脚踏实地抓落实
(1)当日内容,当日消化,加强每天必要的练习检查督促。
(2)坚持每周一次小题训练,每周一次综合训练。
(3)周练与综合训练,切实把握试题的选取,切实把握高考的脉搏,注重基础知识的考查,注重能力的考查,注意思维的层次性(即解法的多样性),适时推出一些新题,加强应用题考察的力度。对每一次考试试题研究,努力提高考试的效率。
① 注意研究高考考试说明,近三年高考试题,特别是全国卷的高考试题。
②在综合练习中,不缩小考试难度,既注意重点知识的考查,注重对数学思想和方法的考查。
③在综合练习中注意实践能力的考查,要求学生能综合应用所学数学知识、思想和方法解决问题,包括解决在相关学科、生产、生活中的数学问题;能阅读、理解对问题进行陈述的材料;能够对所提供的信息资料进行归纳、整理和分类,将实际问题抽象为数学问题,建立数学模型;应用相关的数学方法解决问题并加以验证,并能用数学语言正确地表述、说明.
④在综合练习中注意创新意识的考查:要求学生能对新颖的信息、情境和设问,选择有效的方法和手段收集信息,综合与灵活地应用所学的数学知识、思想和方法,进行独立的思考、探索和研究,提出解决问题的思路,创造性地解决问题.
⑤在综合练习中注意个性品质要求的考查:要求学生能具有一定的数学视野,认识数学的科学价值和人文价值,崇尚数学的理性精神,形成审慎思维的习惯,体会数学的美学意义.要求考生克服紧张情绪,以平和的心态参加考试,合理支配考试时间,以实事求是的科学态度解答试题,树立战胜困难的信心,体现锲而不舍的精神.
4、加强应试心理的指导
为学生减压,开启他们心灵之窗,使他们保持最佳状态。
5、高考数学试卷上的题与我们平日练习的题目不一样,怎么办?复习时应注意什么?
(1)力求作到三个避免
避免需要死记硬背的内容; 避免呆板的试题;避免繁琐的计算.
(2)用学过的知识解决没有见过的问题.利用已有的知识内容、思想方法和基本能力,自己去研究试题所提供的新素材,分析试题所创设的新情况,找出已知和未知间的联系,重新组织若干已有的规则,形成新的高级规则,尝试解决试题所确立的新问题.
6、对重点知识与重点方法要真正理解,并且理解准、透.如概念复习要作到:灵活用好概念的内涵和外延,分清容易混淆的概念间的细微差别,提防误用或错用;全面准确把握好所用概念的前提条件;熟练掌握表示有关概念的字符、记号.
7、加强学法指导
在教学中要让学生明白:
第一轮复习,通常称为方法篇。在这一阶段,老师将以方法、技巧为主线 ……此处隐藏6162个字……/p>
2.学法
引导学生首先从三个现实问题(数数问题、水库水位问题、储蓄问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列概念的特点,推导出等差数列的通项公式;可以对各种能力的同学引导认识多元的推导思维方法。
用多种方法对等差数列的通项公式进行推导。
在引导分析时,留出“空白”,让学生去联想、探索,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的问题弄清。
【教学过程】
教学内容问题预设师生互动预设意图
创设情景,提出问题
问题提出:
1。从0开始,将5的倍数按从小到大的顺序排列,得到的数列是什么?
2。水库管理人员为了保证优质鱼类有良好的生活环境,用定期放水清库的办法清理水库中的杂鱼。如果一个水库的水位为18m,自然放水每天水位降低2。5m,最低降至5m。那么从开始放水算起,到可以进行清理工作的那天,水库每天的水位(单位:m)组成一个什么数列?
3。我国现行储蓄制度规定银行支付存款利息的方式为单利,即不把利息加入本息计算下一期的利息。按照单利计算本利和的公式是:本利和=本金×(1+利率×存期)。按活期存入10 000元钱,年利率是0。72%,那么按照单利,5年内各年末的本利和(单位:元)组成一个什么数列?
教师:以上三个问题中的数蕴涵着三列数。
学生:
1:0,5,10,15,20,25,…。
2:18,15。5,13,10。5,8,5。5。
3:10072,10144,10216,10288,10360。
从实例引入,实质是给出了等差数列的现实背景,目的是让学生感受到等差数列是现实生活中大量存在的数学模型。通过分析,由特殊到一般,激发学生学习探究知识的自主性,培养学生的归纳能力。
观察归纳,形成定义
①0,5,10,15,20,25,…。
②18,15。5,13,10。5,8,5。5。
③10072,10144,10216,10288,10360。
思考1上述数列有什么共同特点?
思考2根据上数列的共同特点,你能给出等差数列的一般定义吗?
思考3你能将上述的文字语言转换成数学符号语言吗?
教师:引导学生思考这三列数具有的共同特征,然后让学生抓住数列的特征,归纳得出等差数列概念。
学生:分组讨论,可能会有不同的答案:前数和后数的差符合一定规律;这些数都是按照一定顺序排列的…只要合理教师就要给予肯定。
教师引导归纳出:等差数列的定义;另外,教师引导学生从数学符号角度理解等差数列的定义。
通过对一定数量感性材料的观察、分析,提炼出感性材料的本质属性;使学生体会到等差数列的规律和共同特点;一开始抓住:“从第二项起,每一项与它的前一项的差为同一常数”,落实对等差数列概念的准确表达。
举一反三,理解定义
练一练:判定下列数列是否为等差数列?若是,指出公差d。
(1)1,1,1,1,1;
(2)1,0,1,0,1;
(3)2,1,0,—1,—2;
(4)4,7,10,13,16。
思考4设数列{an}的通项公式为an=3n+1,该数列是等差数列吗?为什么?
教师出示题目,学生思考回答。教师订正并强调求公差应注意的问题。
注意:公差d是每一项(第2项起)与它的前一项的差,防止把被减数与减数弄颠倒,而且公差可以是正数,负数,也可以为0 。
强化学生对等差数列“等差”特征的理解和应用。
思考5已知等差数列:
8,5,2,…,求第200项?
思考6已知一个等差数列{an}的首项是a1,公差是d,如何求出它的任意项an呢?
教师出示问题,放手让学生探究,然后选择列式具有代表性的上去板演或投影展示。根据学生在课堂上的具体情况进行具体评价、引导,总结推导方法,体会递推思想;让学生初步尝试处理数列问题的常用方法。
引导学生观察、归纳、猜想,培养学生合理的推理能力。学生在分组合作探究过程中,可能会找到多种不同的解决办法,教师要逐一点评,并及时肯定、赞扬学生善于动脑、勇于创新的品质,激发学生的创造意识。鼓励学生自主解答,培养学生运算能力。
理解通项,简单应用
变1判断—401是不是等差数列—5,—9,—13,…的项?如果是,是第几项?
变2在等差数列{an}中,已知a5=10,a12=31, 求a1,d和an。
变3某市出租车的计价标准为1。2元/km,起步价为10元,即最初的4km(不含4千米)计费10元。如果某人乘坐该市的出租车去往14km处的目的地,且一路畅通,等候时间为0,需要支付多少车费?
教师:给出问题,让学生自己操练,教师巡视学生答题情况。
学生:教师叫学生代表总结此类题型的解题思路,教师补充:已知等差数列的首项和公差就可以求出其通项公式。
主要是熟悉公式,使学生从中体会公式与方程之间的联系。初步认识“基本量法”求解等差数列问题。
课堂小结,课外作业
1。一个定义:
等差数列的定义
2。一个公式:
等差数列的通项公式
3。二个应用:
定义和通项公式的应用
教师:让学生思考整理,找几个代表发言,最后教师给出小结内容,并适当解析。
教师展示作业:
P39练习:2,3。
P40习题2。2A组:1,4。
引导学生去联想这一概念所涉及到的各个方面,沟通它们之间的联系,使学生能在新的高度上去重新认识和掌握基本概念,并灵活运用基本概念。
【设计反思】
1。本设计从生活中的数列模型导入,有助于发挥学生学习的主动性,增强学生学习数列的兴趣。在探索的过程中,学生通过分析、观察,归纳出等差数列定义,然后由定义导出通项公式,强化了由具体到抽象,由特殊到一般的思维过程,有助于提高学生分析问题和解决问题的能力。
2。本课各环节的设计环环相扣、简洁明了、重点突出,引导分析细致、到位、适度。如:判断某数列是否成等差数列,这是促进概念理解的好素材;此外,用方程的思想指导等差数列基本量的运算等等。学生在经历过程中,加深了对概念的理解和巩固。
3。本节课教学体现了课堂教学从“灌输式”到“引导发现式”的转变,以教师提出问题、学生探讨解决问题为途径,以相互补充展开教学,总结科学合理的知识体系,形成师生之间的良性互动,提高课堂教学效率。
4。本人认为在概念教学中多花一些时间是值得的,因为只有理解掌握了概念,才能更好地帮助学生落实“双基”,更好地帮助学生认识数学,认识数学的思想和本质,进一步地发展学生的思维,提高学生的解题能力。